کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4633710 | 1340677 | 2009 | 13 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
On the efficiency of Newton and Broyden numerical methods in the investigation of the regular polygon problem of (NÂ +Â 1) bodies
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
ریاضیات
ریاضیات کاربردی
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
Numerical methods of finding the roots of a system of non-linear algebraic equations are treated in this paper. This paper attempts to give an answer to the selection of the most efficient method in a complex problem of Celestial Dynamics, the so-called ring problem of (NÂ +Â 1) bodies. We apply Newton and Broyden's method to these problems and we investigate, by means of their use, the planar equilibrium points, the five equilibrium zones, which are symbolized by A1, A2, B, C2, and C1 (by order of appearance from the center O to the periphery of the imaginary circle on which the primaries lie) [T.J. Kalvouridis, A planar case of the NÂ +Â 1 body problem: the ring problem. Astrophys. Space Sci. 260 (3) (1999) 309-325], and the attracting regions of the system. The efficiency of these methods is studied through a comparative process. The obtained results are demonstrated in figures and are discussed.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Applied Mathematics and Computation - Volume 212, Issue 1, 1 June 2009, Pages 100-112
Journal: Applied Mathematics and Computation - Volume 212, Issue 1, 1 June 2009, Pages 100-112
نویسندگان
M. Gousidou-Koutita, T.J. Kalvouridis,