کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4633716 1340677 2009 15 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Pattern classification by using improved wavelet Compressed Zernike Moments
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات ریاضیات کاربردی
پیش نمایش صفحه اول مقاله
Pattern classification by using improved wavelet Compressed Zernike Moments
چکیده انگلیسی

In this paper, an improved Feature Extraction Method (FEM), which selects discriminative feature sets able to lead to high classification rates in pattern recognition tasks, is presented. The resulted features are the wavelet coefficients of an improved compressed signal, consisting of the Zernike moments amplitudes. By applying a straightforward methodology, it is aimed to construct optimal feature vectors in the sense of vector dimensionality and information content for classification purposes. The resulting surrogate feature vector is of lower dimensionality than the original Zernike moment feature vector and thus more appropriate for pattern recognition tasks.Appropriate validation tests have been arranged, in order to investigate the performance of the proposed algorithm by measuring the discriminative power of the new feature vectors despite the information loss.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Applied Mathematics and Computation - Volume 212, Issue 1, 1 June 2009, Pages 162–176
نویسندگان
, , , ,