کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4633756 | 1340678 | 2009 | 13 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Exploring complexity of large update interior-point methods for Pâ(κ) linear complementarity problem based on Kernel function
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
ریاضیات
ریاضیات کاربردی
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
Interior-point methods not only are the most effective methods in practice but also have polynomial-time complexity. The large update interior-point methods perform in practice much better than the small update methods which have the best known theoretical complexity. In this paper, motivated by the complexity results for linear optimization based on kernel functions, we extend a generic primal-dual interior-point algorithm based on a new kernel function to solve Pâ(κ) linear complementarity problems. By using some elegant and simple tools and having interior-point condition, we show that the large update primal-dual interior-point methods for solving Pâ(κ) linear complementarity problems enjoys Oq(1+2κ)n(logn)q+1qlognε iteration bound which becomes O(1+2κ)nlognlog(logn)lognε with special choices of the parameter q. This bound is much better than the classical primal-dual interior-point methods based on logarithmic barrier function and recent kernel functions introduced by some authors in optimization field. Some computational results have been provided.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Applied Mathematics and Computation - Volume 207, Issue 2, 15 January 2009, Pages 501-513
Journal: Applied Mathematics and Computation - Volume 207, Issue 2, 15 January 2009, Pages 501-513
نویسندگان
Keyvan Amini, M. Reza Peyghami,