کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4633974 | 1340683 | 2008 | 9 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
A nonoscillation theorem for half-linear differential equations with periodic coefficients
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
ریاضیات
ریاضیات کاربردی
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
The half-linear differential equation (ϕp(x′))′+a(t)ϕp(x′)+b(t)ϕp(x)=0(ϕp(x′))′+a(t)ϕp(x′)+b(t)ϕp(x)=0 is considered under the assumption that the coefficient a(t) and an indefinite integral B(t) of b(t) are periodic functions with period T > 0. It is proved that {(p-1)ϕp∗(B(t))-a(t)}B(t)⩽0(0⩽t⩽T) is sufficient for all nontrivial solutions to be nonoscillatory. Here, p > 1 and ϕq(y)=|y|q-2yϕq(y)=|y|q-2y for q = p or q = p∗ = p/(p − 1). The proof is given by means of Riccati technique. The condition is shown to be sharp. Sufficient conditions are also presented for all nontrivial solutions are oscillatory in the linear case p = 2. Some examples and simulations are included to illustrate our results.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Applied Mathematics and Computation - Volume 199, Issue 2, 1 June 2008, Pages 447–455
Journal: Applied Mathematics and Computation - Volume 199, Issue 2, 1 June 2008, Pages 447–455
نویسندگان
Jitsuro Sugie, Kouhei Matsumura,