کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4634605 | 1340696 | 2008 | 6 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
On the computability of binary social choice rules in an infinite society and the halting problem
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
ریاضیات
ریاضیات کاربردی
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
This paper investigates the computability problem of the Arrow impossibility theorem [K.J. Arrow, Social Choice and Individual Values, second ed., Yale University Press, 1963] of social choice theory in a society with an infinite number of individuals (infinite society) according to the computable calculus (or computable analysis) by Aberth [O. Aberth, Computable Analysis, McGraw-Hill, 1980, O. Aberth, Computable Calculus, Academic Press, 2001]. We will show the following results. The problem whether a transitive binary social choice rule satisfying Pareto principle and independence of irrelevant alternatives (IIA) has a dictator or has no dictator in an infinite society is a nonsolvable problem, that is, there exists no ideal computer program for a transitive binary social choice rule satisfying Pareto principle and IIA that decides whether the binary social choice rule has a dictator or has no dictator. And it is equivalent to nonsolvability of the halting problem. A binary social choice rule is a function from profiles of individual preferences to social preferences, and a dictator is an individual such that if he strictly prefers an alternative to another alternative, then the society must also strictly prefer the former to the latter.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Applied Mathematics and Computation - Volume 197, Issue 2, 1 April 2008, Pages 598-603
Journal: Applied Mathematics and Computation - Volume 197, Issue 2, 1 April 2008, Pages 598-603
نویسندگان
Yasuhito Tanaka,