کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4634889 1340702 2007 14 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Nonlinear separation of data via Mixed 0-1 Integer and Linear Programming
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات ریاضیات کاربردی
پیش نمایش صفحه اول مقاله
Nonlinear separation of data via Mixed 0-1 Integer and Linear Programming
چکیده انگلیسی
With extensive experiments on separation of two dimensional artificial datasets that are clean and noisy, we graphically illustrate the aforementioned advantages of the new MILP-based learning methodology. With experiments on real-life benchmark datasets from the UC Irvine Repository of machine learning databases, in comparison with the multisurface method and the support vector machines, we demonstrate the advantage of using and concurrently optimizing more than a single discriminant function for a robust separation of real-life data, hence the utility of the proposed methodology in supervised learning.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Applied Mathematics and Computation - Volume 193, Issue 1, 1 October 2007, Pages 183-196
نویسندگان
, ,