کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4635825 1340715 2007 5 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Ulam’s problem for approximate homomorphisms in connection with Bernoulli’s differential equation
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات ریاضیات کاربردی
پیش نمایش صفحه اول مقاله
Ulam’s problem for approximate homomorphisms in connection with Bernoulli’s differential equation
چکیده انگلیسی

Ulam’s problem for approximate homomorphisms and its application to certain types of differential equations was first investigated by Alsina and Ger. They proved in [C. Alsina, R. Ger, On some inequalities and stability results related to the exponential function, J. Inequal. Appl. 2 (1998) 373–380] that if a differentiable function f:I→Rf:I→R satisfies the differential inequality ∣y′(t) − y(t)∣ ⩽ ε, where I   is an open subinterval of RR, then there exists a solution f0:I→Rf0:I→R of the equation y′(t) = y(t) such that ∣f(t) − f0(t)∣ ⩽ 3ε for any t ∈ I.In this paper, we investigate the Ulam’s problem concerning the Bernoulli’s differential equation of the form y(t)−αy′(t) + g(t)y(t)1−α + h(t) = 0.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Applied Mathematics and Computation - Volume 187, Issue 1, 1 April 2007, Pages 223–227
نویسندگان
, ,