کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4635856 | 1340715 | 2007 | 12 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Random dynamics of polynomials and devil's-staircase-like functions in the complex plane
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
ریاضیات
ریاضیات کاربردی
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
Using the above result and combining it with the theory of random dynamics of complex polynomials, we consider the following: Let Ï be a Borel probability measure in the space {gâC[z]|deg(g)⩾2} with topology induced by the uniform convergence on the Riemann sphere C¯. We consider the i.i.d. random dynamics in C¯ such that at every step we choose a polynomial according to the distribution Ï. Let Tâ(z) be the probability of tending to ââC¯ starting from the initial value zâC¯ and let GÏ be the polynomial semigroup generated by the support of Ï. Suppose that the support of Ï is compact, the postcritical set of GÏ is bounded in the complex plane and the Julia set of GÏ is disconnected. Then, we show that (1) in each component U of the complement of the Julia set of GÏ, Tââ£U equals a constant CU, (2) Tâ:C¯â[0,1] is a continuous function on the whole C¯, and (3) if J1, J2 are two components of the Julia set of GÏ with J1 ⩽ J2, then maxzâJ1Tâ(z)⩽minzâJ2Tâ(z). Hence Tâ is similar to the devil's-staircase function.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Applied Mathematics and Computation - Volume 187, Issue 1, 1 April 2007, Pages 489-500
Journal: Applied Mathematics and Computation - Volume 187, Issue 1, 1 April 2007, Pages 489-500
نویسندگان
Hiroki Sumi,