کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4635924 1340716 2006 8 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Accurate numerical partials with applications to optimization
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات ریاضیات کاربردی
پیش نمایش صفحه اول مقاله
Accurate numerical partials with applications to optimization
چکیده انگلیسی

In this paper we show how to obtain O(h4) accurate approximations of the gradient and Hessian of all functions f : Rn → R, f ∈ C6(B(r)), B(r) an open ball of large radius r centered at the origin. Here h is the finite difference quotient increment. This O(h4) accuracy is attained by exploiting the classical numerical analytical notions of central difference quotients and extrapolation-to-the limit. The computational cost is 2n(n + 1) + 1 function evaluations per numerical gradient/Hessian. We give three numerical gradient/Hessian test case results. Also discussed is the performance of a prototype minimization algorithm using these accurate partials applied to two test cases: the Rosenbrock Banana function and a statistical parameter estimation maximum likelihood problem.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Applied Mathematics and Computation - Volume 183, Issue 1, 1 December 2006, Pages 551–558
نویسندگان
,