کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4636000 | 1340717 | 2007 | 10 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Chandrasekhar-type recursive Wiener estimation technique in linear discrete-time stochastic systems
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
ریاضیات
ریاضیات کاربردی
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
Previously, certain fast algorithm, called Chandrasekhar-type one-step ahead predictor, for recursive least-squares (RLS) estimation by the Kalman one-step ahead predictor is developed in discrete-time systems. In this paper, the Chandrasekhar-type recursive Wiener filter and fixed-point smoother are designed by factorization of increment of the Riccati variable, which is the auto-variance function of the filtering estimate, in the RLS Wiener filtering algorithm in linear discrete-time wide-sense stationary stochastic systems. In general, the characteristic of the Chandrasekhar-type filter is that the filter gain is directly updated recursively in the algorithms. The total number of operations in the new filter algorithm is less than the Riccati-equation based RLS Wiener filter, with significant reductions being obtained.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Applied Mathematics and Computation - Volume 188, Issue 2, 15 May 2007, Pages 1656-1665
Journal: Applied Mathematics and Computation - Volume 188, Issue 2, 15 May 2007, Pages 1656-1665
نویسندگان
Seiichi Nakamori,