کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4636166 1340720 2006 8 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
On multisymplectic integrators based on Runge-Kutta-Nyström methods for Hamiltonian wave equations
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات ریاضیات کاربردی
پیش نمایش صفحه اول مقاله
On multisymplectic integrators based on Runge-Kutta-Nyström methods for Hamiltonian wave equations
چکیده انگلیسی
Many conservative partial differential equations (PDEs), such as wave equations, Schrödinger equations, KdV equations, Maxwell equations and so on, allow for a multisymplectic formulation which can be regarded as a generalization of the symplectic structure of Hamiltonian ordinary differential equations (ODEs). In this note, for Hamiltonian wave equations, we show the discretization in space and time using two symplectic Runge-Kutta-Nyström (SRKN) methods respectively leads to a multisymplectic integrator which can preserve a discrete multisymplectic conservation law. Moreover, we discuss the energy and momentum conservative properties of the multisymplectic integrator for the wave equations with a quadratic potential.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Applied Mathematics and Computation - Volume 182, Issue 2, 15 November 2006, Pages 1056-1063
نویسندگان
, , ,