کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4636752 1340727 2006 4 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Dirac equation on hyperbolic octonions
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات ریاضیات کاربردی
پیش نمایش صفحه اول مقاله
Dirac equation on hyperbolic octonions
چکیده انگلیسی

When extending complex number algebra using nonreal square roots of +1, the resulting arithmetic has long exhibited signs for potential applicability in physics. This article provides proof to a statement by Musès [C. Musès, Hypernumbers and quantum field theory with a summary of physically applicable hypernumber arithmetics and their geometries, Appl. Math. Comput. 6 (1980) 63–94] that the Dirac equation in physics can be found in conic sedenions (or 16-dimensional M-algebra). Hyperbolic octonions (or counteroctonions), a subalgebra of conic sedenions, are used to describe the Dirac equation sufficiently in a simple form. In the example of conic sedenions, a method is then outlined on how hypernumbers could potentially further aid mathematical description of physical law, by transitioning between different geometries through genuine hypernumber rotation.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Applied Mathematics and Computation - Volume 182, Issue 1, 1 November 2006, Pages 443–446
نویسندگان
,