کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4646532 1632250 2015 9 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
New classes of panchromatic digraphs
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات ریاضیات گسسته و ترکیبات
پیش نمایش صفحه اول مقاله
New classes of panchromatic digraphs
چکیده انگلیسی
A digraph D=(V,A) with a k-colouring of its arcs ς:A→[k] is said to have a ς-kernel if there exists a subset K of V such that there are no monochromatic uv-paths for any two vertices u,v∈K, but for every w∈V−K, there exists a vertex v∈K such that there is a monochromatic wv-path in D. The panchromatic number, π(D), of D is the greatest integer k for which D has a ς-kernel for every possible k-colouring of its arcs. D is said to be a panchromatic digraph if, for every k≤|A| and every k-colouring ς:A→[k], D has a ς-kernel. In this paper we study the panchromaticity of cycles. In particular, we show that even cycles are panchromatic and that π(C)=2 when C is an odd cycle. We also set sufficient conditions, in terms of its induced subdigraphs, for a digraph D to be panchromatic, and we show through counterexamples that these results cannot be improved.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: AKCE International Journal of Graphs and Combinatorics - Volume 12, Issues 2–3, November–December 2015, Pages 124-132
نویسندگان
, ,