کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4651530 1632578 2016 16 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Tri-connectivity Augmentation in Trees
ترجمه فارسی عنوان
تقویت اتصال سه جانبه در درختان
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات ریاضیات گسسته و ترکیبات
چکیده انگلیسی

For a connected graph, a minimum vertex separator is a minimum set of vertices whose removal creates at least two connected components. The vertex connectivity of the graph refers to the size of the minimum vertex separator and a graph is k-vertex connected if its vertex connectivity is k  , k≥1k≥1. Given a k-vertex connected graph G, the combinatorial problem vertex connectivity augmentation asks for a minimum number of edges whose augmentation to G   makes the resulting graph (k+1)(k+1)-vertex connected. In this paper, we initiate the study of r-vertex connectivity augmentation whose objective is to find a (k+r)(k+r)-vertex connected graph by augmenting a minimum number of edges to a k  -vertex connected graph, r≥1r≥1. We shall investigate this question for the special case when G is a tree and r=2r=2. In particular, we present a polynomial-time algorithm to find a minimum set of edges whose augmentation to a tree makes it 3-vertex connected. Using lower bound arguments, we show that any tri-vertex connectivity augmentation of trees requires at least ⌈2l1+l22⌉ edges, where l1l1 and l2l2 denote the number of degree one vertices and degree two vertices, respectively. Further, we establish that our algorithm indeed augments this number, thus yielding an optimum algorithm.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Electronic Notes in Discrete Mathematics - Volume 53, September 2016, Pages 57–72
نویسندگان
, , ,