کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4651653 1632581 2015 6 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Decompositions of highly connected graphs into paths of length five
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات ریاضیات گسسته و ترکیبات
پیش نمایش صفحه اول مقاله
Decompositions of highly connected graphs into paths of length five
چکیده انگلیسی

We study the decomposition conjecture posed by Barát and Thomassen (2006), which states that, for each tree T, there exists a natural number kT such that, if G is a kT-edge-connected graph and |E(T)| divides |E(G)|, then G admits a partition of its edge set into classes each of which induces a copy of T. In a series of papers, starting in 2008, Thomassen has verified this conjecture for stars, some bistars, paths of length 3, and paths whose length is a power of 2. In this paper we verify this conjecture for paths of length 5.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Electronic Notes in Discrete Mathematics - Volume 50, December 2015, Pages 211-216