کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4651912 1632582 2015 6 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Harmonious and achromatic colorings of fragmentable hypergraphs
ترجمه فارسی عنوان
رنگ آمیزی رنگ آمیزی و رنگ آمیزی از ابرگرافی های قطعی
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات ریاضیات گسسته و ترکیبات
چکیده انگلیسی

A harmonious coloring of a k-uniform hypergraph H is a rainbow vertex coloring such that each k-set of colors appears on at most one edge. A rainbow coloring of H is achromatic if each k-set of colors appears on at least one edge. The harmonious (resp. achromatic) number of H, denoted by h(H) (resp. ψ(H)) is the minimum (resp. maximum) possible number of colors in a harmonious (resp. achromatic) coloring of H. A class H of hypergraphs is fragmentable if for every H∈H, H can be fragmented to components of a bounded size by removing a “small” fraction of vertices.We show that for every fragmentable class H of bounded degree hypergraphs, for every ϵ>0 and for every hypergraph H∈H with m≥m0(H,ϵ) edges we have and .As corollaries, we answer a question posed by Blackburn (concerning the maximum length of packing t-subset sequences of constant radius) and derive an asymptotically tight bound on the minimum number of colors in a vertex-distinguishing edge coloring of cubic planar graphs (which is a step towards confirming a conjecture of Burris and Schelp).

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Electronic Notes in Discrete Mathematics - Volume 49, November 2015, Pages 309-314