کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4651933 1632582 2015 7 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
The spectral excess theorem for distance-regular graphs having distance-d graph with fewer distinct eigenvalues
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات ریاضیات گسسته و ترکیبات
پیش نمایش صفحه اول مقاله
The spectral excess theorem for distance-regular graphs having distance-d graph with fewer distinct eigenvalues
چکیده انگلیسی

Let Γ be a distance-regular graph with diameter d and Kneser graph K=Γd, the distance-d graph of Γ. We say that Γ is partially antipodal when K has fewer distinct eigenvalues than Γ. In particular, this is the case of antipodal distance-regular graphs (K with only two distinct eigenvalues), and the so-called half-antipodal distance-regular graphs (K with only one negative eigenvalue). We provide a characterization of partially antipodal distance-regular graphs (among regular graphs with d distinct eigenvalues) in terms of the spectrum and the mean number of vertices at maximal distance d from every vertex. This can be seen as a general version of the so-called spectral excess theorem, which allows us to characterize those distance-regular graphs which are half-antipodal, antipodal, bipartite, or with Kneser graph being strongly regular.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Electronic Notes in Discrete Mathematics - Volume 49, November 2015, Pages 457-463