کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4652053 1632587 2013 7 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Snarks and Flow-Critical Graphs
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات ریاضیات گسسته و ترکیبات
پیش نمایش صفحه اول مقاله
Snarks and Flow-Critical Graphs
چکیده انگلیسی

It is well-known that a 2-edge-connected cubic graph has a 3-edge-colouring if and only if it has a 4-flow. Snarks are usually regarded to be, in some sense, the minimal cubic graphs without a 3-edge-colouring. We defined the notion of 4-flow-critical graphs as an alternative concept towards minimal graphs. It turns out that every snark has a 4-flow-critical snark as a minor. We verify, surprisingly, that less than 5% of the snarks with up to 28 vertices are 4-flow-critical. On the other hand, there are infinitely many 4-flow-critical snarks, as every flower-snark is 4-flow-critical. These observations give some insight into a new research approach regarding Tutteʼs Flow Conjectures.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Electronic Notes in Discrete Mathematics - Volume 44, 5 November 2013, Pages 299-305