کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4652166 1632588 2013 11 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
On the Longest Paths and the Diameter in Random Apollonian Networks
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات ریاضیات گسسته و ترکیبات
پیش نمایش صفحه اول مقاله
On the Longest Paths and the Diameter in Random Apollonian Networks
چکیده انگلیسی

We consider the following iterative construction of a random planar triangulation. Start with a triangle embedded in the plane. In each step, choose a bounded face uniformly at random, add a vertex inside that face and join it to the vertices of the face. After n−3 steps, we obtain a random triangulated plane graph with n vertices, which is called a Random Apollonian Network (RAN). We show that asymptotically almost surely (a.a.s.) every path in a RAN has length o(n), refuting a conjecture of Frieze and Tsourakakis. We also show that a RAN always has a path of length (2n−5)log2/log3, and that the expected length of its longest path is Ω(n0.88). Finally, we prove that a.a.s. the diameter of a RAN is asymptotic to , where c≈1.668 is the solution of an explicit equation.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Electronic Notes in Discrete Mathematics - Volume 43, 5 September 2013, Pages 355-365