کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4652176 | 1632588 | 2013 | 7 صفحه PDF | دانلود رایگان |

Given a graph G, the modularity of a partition of the vertex set measures the extent to which edge density is higher within parts than between parts; and the modularity of G is the maximum modularity of a partition.We give an upper bound on the modularity of r-regular graphs as a function of the edge expansion (or isoperimetric number) under the restriction that each part in our partition has a sub-linear numbers of vertices. This leads to results for random r-regular graphs. In particular we show the modularity of a random cubic graph partitioned into sub-linear parts is almost surely in the interval (0.66, 0.88).The modularity of a complete rectangular section of the integer lattice in a fixed dimension was estimated in Guimer et. al. [R. Guimerà, M. Sales-Pardo and L.A. Amaral, Modularity from fluctuations in random graphs and complex networks, Phys. Rev. E 70 (2) (2004) 025101]. We extend this result to any subgraph of such a lattice, and indeed to more general graphs.
Journal: Electronic Notes in Discrete Mathematics - Volume 43, 5 September 2013, Pages 431-437