کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4652205 1632591 2013 5 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Non-projective embeddings in the Grassmann variety
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات ریاضیات گسسته و ترکیبات
پیش نمایش صفحه اول مقاله
Non-projective embeddings in the Grassmann variety
چکیده انگلیسی

We investigate properties of the grassmann embedding of dual classical thick generalized quadrangles focusing on the Grassmann embedding of the dual DQ(4,F) of an orthogonal quadrangle Q(4,F) and the dual DH(4,F) of a hermitian quadrangle H(4,F). We prove that, if the characteristic of the field F is different from 2 then the dimension of the grassmann embedding of DQ(4,F) is 10 and its image is isomorphic to the quadratic veronese variety of a 3-dimensional projective space. If F is a perfect field of characteristic 2 then the dimension of the grassmann embedding of DQ(4,F) is proved to be 9 and its image is a 3-dimensional algebraic subvariety of the Grassmannian of lines of a 4-dimensional projective space. Moving to consider the dual quadrangle DH(4,F), we prove that the dimension of its Grassmann embedding is 10 and the image of DH(4,F) under the Grassmann embedding is a 2-dimensional algebraic subvariety of the Grassmannian of lines of a 4-dimensional projective space.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Electronic Notes in Discrete Mathematics - Volume 40, 15 May 2013, Pages 53-57