کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4652338 | 1632597 | 2009 | 7 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Acyclic choosability of planar graphs: a Steinberg like approach
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
ریاضیات
ریاضیات گسسته و ترکیبات
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
An acyclic coloring of a graph G is a coloring of its vertices such that : (i) no two adjacent vertices in G receive the same color and (ii) no bicolored cycles exist in G. A list assignment of G is a function L that assigns to each vertex v∈V(G) a list L(v) of available colors. Let G be a graph and L be a list assignment of G. The graph G is acyclically L-list colorable if there exists an acyclic coloring ϕ of G such that ϕ(v)∈L(v) for all v∈V(G). If G is acyclically L-list colorable for any list assignment L with |L(v)|⩾k for all v∈V(G), then G is acyclically k-choosable. In this note, we prove that every planar graph without cycles of lengths 4 to 12 is acyclically 3-choosable.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Electronic Notes in Discrete Mathematics - Volume 34, 1 August 2009, Pages 199-205
Journal: Electronic Notes in Discrete Mathematics - Volume 34, 1 August 2009, Pages 199-205