کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4652440 1632596 2009 6 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
A polyhedral study of the acyclic coloring problem
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات ریاضیات گسسته و ترکیبات
پیش نمایش صفحه اول مقاله
A polyhedral study of the acyclic coloring problem
چکیده انگلیسی

A coloring of a graph G is an assignment of colors to the vertices of G such that any two vertices receive distinct colors whenever they are adjacent. An acyclic coloring of G is a coloring such that no cycle of G receives exactly two colors, and the acyclic chromatic number χA(G) of a graph G is the minimum number of colors in any such coloring of G. Given a graph G and an integer k, determining whether χA(G)⩽k or not is NP-complete even for k=3. The acyclic coloring problem arises in the context of efficient computations of sparse and symmetric Hessian matrices via substitution methods. In this work we start an integer programming approach for this problem, by introducing a natural integer programming formulation and presenting six facet-inducing families of valid inequalities.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Electronic Notes in Discrete Mathematics - Volume 35, 1 December 2009, Pages 35-40