کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4652469 1632596 2009 6 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
On coloring problems with local constraints
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات ریاضیات گسسته و ترکیبات
پیش نمایش صفحه اول مقاله
On coloring problems with local constraints
چکیده انگلیسی

We show complexity results for some generalizations of the graph coloring problem on two classes of perfect graphs, namely clique trees and unit interval graphs. We deal with the μ-coloring problem (upper bounds for the color on each vertex), the precoloring extension problem (a subset of vertices colored beforehand), and a problem generalizing both of them, the (γ, μ)-coloring problem (lower and upper bounds for the color on each vertex). We characterize the complexity of all those problems on clique trees of different heights, providing polytime algorithms for the cases that are easy. These results have two interesting corollaries: first, one can observe on clique trees of different heights the increasing complexity of the chain k-coloring, μ-coloring, (γ, μ)-coloring, list-coloring. Second, clique trees of height 2 are the first known example of a class of graphs where μ-coloring is polynomial time solvable and precoloring extension is NP-complete, thus being at the same time the first example where μ-coloring is polynomially solvable and (γ, μ)-coloring is NP-complete. Last, we show that the μ-coloring problem on unit interval graphs is NP-complete. These results answer three questions from [Ann. Oper. Res. 169(1) (2009), 3–16].

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Electronic Notes in Discrete Mathematics - Volume 35, 1 December 2009, Pages 215-220