کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4652523 | 1632600 | 2008 | 6 صفحه PDF | دانلود رایگان |

In this extended abstract we develop a notion of ×-homotopy of graph maps that is based on the internal hom associated to the categorical product. We show that graph ×-homotopy is characterized by the topological properties of the so-called Hom complex, a functorial way to assign a poset to a pair of graphs. Along the way we establish some structural properties of Hom complexes involving products and exponentials of graphs, as well as a symmetry result which can be used to reprove a theorem of Kozlov involving foldings of graphs. We end with a discussion of graph homotopies arising from other internal homs, including the construction of ‘A-theory’ associated to the cartesian product in the category of reflexive graphs. For proofs and further discussions we refer the reader to the full paper [Anton Dochtermann. Hom complexes and homotopy theory in the category of graphs. arXiv:math.CO/0605275].
Journal: Electronic Notes in Discrete Mathematics - Volume 31, 20 August 2008, Pages 131-136