کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4652534 1632600 2008 6 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Number of Crossing-Free Geometric Graphs vs. Triangulations
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات ریاضیات گسسته و ترکیبات
پیش نمایش صفحه اول مقاله
Number of Crossing-Free Geometric Graphs vs. Triangulations
چکیده انگلیسی

We show that there is a constant α>0 such that, for any set P of n⩾ 5 points in general position in the plane, a crossing-free geometric graph on P that is chosen uniformly at random contains, in expectation, at least edges, where M denotes the number of edges in any triangulation of P. From this we derive (to our knowledge) the first non-trivial upper bound of the form cn⋅tr(P) on the number of crossing-free geometric graphs on P; that is, at most a fixed exponential in n times the number of triangulations of P. (The trivial upper bound of M2⋅tr(P), or c=2M/n, follows by taking subsets of edges of each triangulation.) If the convex hull of P is triangular, then M=3n−6, and we obtain c<7.98.Upper bounds for the number of crossing-free geometric graphs on planar point sets have so far applied the trivial n8 factor to the bound for triangulations; we slightly decrease this bound to O(n343.11).

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Electronic Notes in Discrete Mathematics - Volume 31, 20 August 2008, Pages 195-200