کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4652561 1632599 2009 8 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Min-weight double-tree shortcutting for Metric TSP: Bounding the approximation ratio
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات ریاضیات گسسته و ترکیبات
پیش نمایش صفحه اول مقاله
Min-weight double-tree shortcutting for Metric TSP: Bounding the approximation ratio
چکیده انگلیسی

The Metric Traveling Salesman Problem (TSP) is a classical NP-hard optimization problem. The double-tree shortcutting method for Metric TSP yields an exponentially-sized space of TSP tours, each of which approximates the optimal solution within at most a factor of 2. We consider the problem of finding among these tours the one that gives the closest approximation, i.e. the minimum-weight double-tree shortcutting. Previously, we gave an efficient algorithm for this problem, and carried out its experimental analysis. In this paper, we address the related question of the worst-case approximation ratio for the minimum-weight double-tree shortcutting method. In particular, we give lower bounds on the approximation ratio in some specific metric spaces: the ratio of 2 in the discrete shortest path metric, 1.622 in the planar Euclidean metric, and 1.666 in the planar Minkowski metric. The first of these lower bounds is tight; we conjecture that the other two bounds are also tight, and in particular that the minimum-weight double-tree method provides a 1.622-approximation for planar Euclidean TSP.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Electronic Notes in Discrete Mathematics - Volume 32, 15 March 2009, Pages 19-26