کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4652615 1632594 2011 6 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Disjunctive ranks and anti-ranks of some facet-inducing inequalities of the acyclic coloring polytope
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات ریاضیات گسسته و ترکیبات
پیش نمایش صفحه اول مقاله
Disjunctive ranks and anti-ranks of some facet-inducing inequalities of the acyclic coloring polytope
چکیده انگلیسی

A coloring of a graph G is an assignment of colors to the vertices of G such that any two vertices receive distinct colors whenever they are adjacent. An acyclic coloring of G is a coloring such that no cycle of G receives exactly two colors, and the acyclic chromatic number χA(G) of a graph G is the minimum number of colors in any such coloring of G. Given a graph G and an integer k, determining whether χA(G)⩽k or not is NP-complete even for k=3. The acyclic coloring problem arises in the context of efficient computations of sparse and symmetric Hessian matrices via substitution methods. In this work we study the disjunctive rank of six facet-inducing families of valid inequalities for the polytope associated to a natural integer programming formulation of the acyclic coloring problem. We also introduce the concept of disjunctive anti-rank and study the anti-rank of these families.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Electronic Notes in Discrete Mathematics - Volume 37, 1 August 2011, Pages 213-218