کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4652683 | 1632601 | 2008 | 6 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Colouring clique-hypergraphs of circulant graphs 1
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
ریاضیات
ریاضیات گسسته و ترکیبات
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
A clique-colouring of a graph G is a colouring of the vertices of G so that no maximal clique of size at least two is monochromatic. The clique-hypergraph, H(G), of a graph G has V(G) as its set of vertices and the maximal cliques of G as its hyperedges. A vertex-colouring of H(G) is a clique-colouring of G. Determining the clique-chromatic number, the least number for which a graph G admits a clique-colouring, is known to be NP-hard. We establish that the clique-chromatic number for powers of cycles is equal to two, except for odd cycles of size at least five, that need three colours. For odd-seq circulant graphs, we show that their clique-chromatic number is at most four, and determine the cases when it is equal to two.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Electronic Notes in Discrete Mathematics - Volume 30, 20 February 2008, Pages 189-194
Journal: Electronic Notes in Discrete Mathematics - Volume 30, 20 February 2008, Pages 189-194