کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4652875 1632603 2007 8 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Edge-Colourings of Cubic Graphs and Universal Steiner Triple Systems
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات ریاضیات گسسته و ترکیبات
پیش نمایش صفحه اول مقاله
Edge-Colourings of Cubic Graphs and Universal Steiner Triple Systems
چکیده انگلیسی

Given a Steiner triple system S, we say that a cubic graph G is S-colourable if its edges can be coloured by points of S in such way that the colours of any three edges incident with the same vertex form a triple of S. We prove that there is Steiner triple system U of order 21 which is universal in the sense that every simple cubic graph is U-colourable. This improves the result of Grannell et al. [J. Graph Theory 46 (2004), 15–24] who found a similar system of order 381. On the other hand, it is known that any universal Steiner triple system must have order at least 13, and it has been conjectured that this bound is sharp (Holroyd and Škoviera [J. Combin. Theory Ser. B 91 (2004), 57–66]).

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Electronic Notes in Discrete Mathematics - Volume 28, 1 March 2007, Pages 485-492