کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4652885 1632603 2007 8 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Some extensions of the Cauchy-Davenport theorem
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات ریاضیات گسسته و ترکیبات
پیش نمایش صفحه اول مقاله
Some extensions of the Cauchy-Davenport theorem
چکیده انگلیسی

The Cauchy-Davenport theorem states that, if p is prime and A, B are nonempty subsets of cardinality r, s   in Z/pZZ/pZ, the cardinality of the sumset A+B={a+b|a∈A,b∈B}A+B={a+b|a∈A,b∈B} is bounded below by min(r+s−1,p)min(r+s−1,p); moreover, this lower bound is sharp. Natural extensions of this result consist in determining, for each group G   and positive integers r,s⩽|G|r,s⩽|G|, the analogous sharp lower bound, namely the functionμG(r,s)=min{|A+B||A,B⊂G,|A|=r,|B|=s}. Important progress on this topic has been achieved in recent years, leading to the determination of μGμG for all abelian groups G. In this note we survey the history of earlier results and the current knowledge on this function.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Electronic Notes in Discrete Mathematics - Volume 28, 1 March 2007, Pages 557–564
نویسندگان
, ,