کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4653220 1632759 2016 11 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Eventual quasi-linearity of the Minkowski length
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات ریاضیات گسسته و ترکیبات
پیش نمایش صفحه اول مقاله
Eventual quasi-linearity of the Minkowski length
چکیده انگلیسی

The Minkowski length of a lattice polytope PP is a natural generalization of the lattice diameter of PP. It can be defined as the largest number of lattice segments whose Minkowski sum is contained in PP. The famous Ehrhart theorem states that the number of lattice points in the positive integer dilates tPtP of a lattice polytope PP behaves polynomially in t∈Nt∈N. In this paper we prove that for any lattice polytope PP, the Minkowski length of tPtP for t∈Nt∈N is eventually a quasi-polynomial with linear constituents. We also give a formula for the Minkowski length of coordinates boxes, degree one polytopes, and dilates of unimodular simplices. In addition, we give a new bound for the Minkowski length of lattice polygons and show that the Minkowski length of a lattice triangle coincides with its lattice diameter.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: European Journal of Combinatorics - Volume 58, November 2016, Pages 107–117
نویسندگان
, ,