کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4653244 1632768 2015 18 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
The Las Vergnas polynomial for embedded graphs
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات ریاضیات گسسته و ترکیبات
پیش نمایش صفحه اول مقاله
The Las Vergnas polynomial for embedded graphs
چکیده انگلیسی

The Las Vergnas polynomial is an extension of the Tutte polynomial to cellularly embedded graphs. It was introduced by Michel Las Vergnas in 1978 as special case of his Tutte polynomial of a morphism of matroids. While the general Tutte polynomial of a morphism of matroids has a complete set of deletion–contraction relations, its specialisation to cellularly embedded graphs does not. Here we extend the Las Vergnas polynomial to graphs in pseudo-surfaces. We show that in this setting we can define deletion and contraction for embedded graphs consistently with the deletion and contraction of the underlying matroid perspective, thus yielding a version of the Las Vergnas polynomial with complete recursive definition. This also enables us to obtain a deeper understanding of the relationships among the Las Vergnas polynomial, the Bollobás–Riordan polynomial, and the Krushkal polynomial. We also take this opportunity to extend some of Las Vergnas’ results on Eulerian circuits from graphs in surfaces of low genus to graphs in surfaces of arbitrary genus.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: European Journal of Combinatorics - Volume 50, November 2015, Pages 97–114
نویسندگان
, ,