کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4653249 | 1632768 | 2015 | 21 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
The degree of point configurations: Ehrhart theory, Tverberg points and almost neighborly polytopes
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
ریاضیات
ریاضیات گسسته و ترکیبات
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
The degree of a point configuration is defined as the maximal codimension of its interior faces. This concept is motivated from a corresponding Ehrhart-theoretic notion for lattice polytopes and is related to neighborly polytopes, to the Generalized Lower Bound Theorem and, by Gale duality, to Tverberg theory.The main results of this paper are a complete classification of point configurations of degree 1, as well as a structure result on point configurations whose degree is less than a third of the dimension. Statements and proofs involve the novel notion of a weak Cayley decomposition, and imply that the mm-core of a set SS of nn points in RrRr is contained in the set of Tverberg points of order (3m−2(n−r))(3m−2(n−r)) of SS.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: European Journal of Combinatorics - Volume 50, November 2015, Pages 159–179
Journal: European Journal of Combinatorics - Volume 50, November 2015, Pages 159–179
نویسندگان
Benjamin Nill, Arnau Padrol,