کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4653377 1632776 2015 24 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
The Andrews-Olsson identity and Bessenrodt insertion algorithm on Young walls
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات ریاضیات گسسته و ترکیبات
پیش نمایش صفحه اول مقاله
The Andrews-Olsson identity and Bessenrodt insertion algorithm on Young walls
چکیده انگلیسی
We extend the Andrews-Olsson identity to two-colored partitions. Regarding the sets of proper Young walls of quantum affine algebras gn=A2n(2), A2n−1(2), Bn(1), Dn(1) and Dn+1(2) as the sets of two-colored partitions, the extended Andrews-Olsson identity implies that the generating functions of the sets of reduced Young walls have very simple formulae:∏i=1∞(1+ti)κiwhere  κi=0,1  or 2, andκi  varies periodically. Moreover, we generalize Bessenrodt's algorithms to prove the extended Andrews-Olsson identity in an alternative way. From these algorithms, we can give crystal structures on certain subsets of pair of strict partitions which are isomorphic to the crystal bases B(Λ) of the level 1 highest weight modules V(Λ) over Uq(gn).
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: European Journal of Combinatorics - Volume 43, January 2015, Pages 8-31
نویسندگان
,