کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4653382 | 1632776 | 2015 | 26 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Decomposing a planar graph without cycles of length 5 into a matching and a 3-colorable graph
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
ریاضیات
ریاضیات گسسته و ترکیبات
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
It is known that there are planar graphs without cycles of length 5 that are not 3-colorable. However, it was conjectured that every planar graph without cycles of length 5 is 3-colorable if it has no 14-cycles (Steinberg’s conjecture); or2intersecting triangles (the weak Bordeaux conjecture); or3adjacent triangles (the strong Bordeaux conjecture).All these conjectures remain open. As a variation of these conjectures, this paper proves that every planar graph without cycles of length 5 can be decomposed into a matching and a 3-colorable graph. This is the best possible in the sense that there are infinite planar graphs which have no such decomposition.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: European Journal of Combinatorics - Volume 43, January 2015, Pages 98–123
Journal: European Journal of Combinatorics - Volume 43, January 2015, Pages 98–123
نویسندگان
Yingqian Wang, Jinghan Xu,