کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4653430 | 1632771 | 2015 | 7 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
On the Erdős–Ko–Rado theorem and the Bollobás theorem for tt-intersecting families
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
ریاضیات
ریاضیات گسسته و ترکیبات
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
A family FF is tt-intersecting if any two members have at least tt common elements. Erdős, Ko and Rado (1961) proved that the maximum size of a tt-intersecting family of subsets of size kk is equal to n−tk−t if n≥n0(k,t)n≥n0(k,t). Alon, Aydinian and Huang (2014) considered families generalizing intersecting families, and proved the same bound. In this paper, we give a strengthening of their result by considering families generalizing tt-intersecting families for all t≥1t≥1. In 2004, Talbot generalized Bollobás’s Two Families Theorem (Bollobás, 1965) to tt-intersecting families. In this paper, we proved a slight generalization of Talbot’s result by using the probabilistic method.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: European Journal of Combinatorics - Volume 47, July 2015, Pages 68–74
Journal: European Journal of Combinatorics - Volume 47, July 2015, Pages 68–74
نویسندگان
Dong Yeap Kang, Jaehoon Kim, Younjin Kim,