کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4653442 1632772 2015 29 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
An analogue of the Robinson–Schensted–Knuth correspondence and non-symmetric Cauchy kernels for truncated staircases
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات ریاضیات گسسته و ترکیبات
پیش نمایش صفحه اول مقاله
An analogue of the Robinson–Schensted–Knuth correspondence and non-symmetric Cauchy kernels for truncated staircases
چکیده انگلیسی

We prove a restriction of an analogue of the Robinson–Schensted–Knuth correspondence for semi-skyline augmented fillings, due to Mason, to multisets of cells of a staircase possibly truncated by a smaller staircase at the upper left end corner, or at the bottom right end corner. The restriction to be imposed on the pairs of semi-skyline augmented fillings is that the pair of shapes, rearrangements of each other, satisfies an inequality in the Bruhat order, w.r.t. the symmetric group, where one shape is bounded by the reverse of the other. For semi-standard Young tableaux the inequality means that the pair of their right keys is such that one key is bounded by the Schützenberger evacuation of the other. This bijection is then used to obtain an expansion formula of the non-symmetric Cauchy kernel, over staircases or truncated staircases, in the basis of Demazure characters of type AA, and the basis of Demazure atoms. The expansion implies Lascoux expansion formula, when specialized to staircases or truncated staircases, and make explicit, in the latter, the Young tableaux in the Demazure crystal by interpreting Demazure operators via elementary bubble sorting operators acting on weak compositions.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: European Journal of Combinatorics - Volume 46, May 2015, Pages 16–44
نویسندگان
, ,