کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4653447 | 1632772 | 2015 | 6 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
The minimum number of edges in a 4-critical graph that is bipartite plus 3 edges
ترجمه فارسی عنوان
حداقل تعداد لبه ها در گراف 4 بحرانی دو طرفه به همراه 3 لبه
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
ریاضیات
ریاضیات گسسته و ترکیبات
چکیده انگلیسی
Rödl and Tuza proved that sufficiently large (k+1)(k+1)-critical graphs cannot be made bipartite by deleting fewer than (k2) edges, and that this is sharp. Chen, Erdős, Gyárfás, and Schelp constructed infinitely many 44-critical graphs obtained from bipartite graphs by adding a matching of size 33 (and called them (B+3)(B+3)-graphs). They conjectured that every nn-vertex (B+3)(B+3)-graph has much more than 5n/35n/3 edges, presented (B+3)(B+3)-graphs with 2n−32n−3 edges, and suggested that perhaps 2n2n is the asymptotically best lower bound. We prove that indeed every (B+3)(B+3)-graph has at least 2n−32n−3 edges.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: European Journal of Combinatorics - Volume 46, May 2015, Pages 89–94
Journal: European Journal of Combinatorics - Volume 46, May 2015, Pages 89–94
نویسندگان
A.V. Kostochka, B.M. Reiniger,