کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4653452 1632772 2015 15 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Toll convexity
ترجمه فارسی عنوان
محاسبه توده
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات ریاضیات گسسته و ترکیبات
چکیده انگلیسی

A walk WW between two non-adjacent vertices in a graph GG is called tolled if the first vertex of WW is among vertices from WW adjacent only to the second vertex of WW, and the last vertex of WW is among vertices from WW adjacent only to the second-last vertex of WW. In the resulting interval convexity, a set S⊂V(G)S⊂V(G) is toll convex if for any two non-adjacent vertices x,y∈Sx,y∈S any vertex in a tolled walk between xx and yy is also in SS. The main result of the paper is that a graph is a convex geometry (i.e. satisfies the Minkowski–Krein–Milman property stating that any convex subset is the convex hull of its extreme vertices) with respect to toll convexity if and only if it is an interval graph. Furthermore, some well-known types of invariants are studied with respect to toll convexity, and toll convex sets in three standard graph products are completely described.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: European Journal of Combinatorics - Volume 46, May 2015, Pages 161–175
نویسندگان
, , , , , , ,