کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4653477 | 1632779 | 2014 | 10 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
On color-automorphism vertex transitivity of semigroups
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
ریاضیات
ریاضیات گسسته و ترکیبات
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
In this paper, we continue the study of Kelarev and Praeger devoted to the color-automorphism vertex transitivity of Cayley graphs of semigroups and we generalize and complete some of their results. For this purpose, first we show that for a semigroup S and a non-empty subset CâS, the ColAutC(S)-vertex-transitivity of Cay(S,C) is equivalent to the ColAutãCã(S)-vertex transitivity of Cay(S,ãCã), where ãCã denotes the subsemigroup generated by C in S. Then we use this result to characterize a color-automorphism vertex transitive Cayley graph Cay(S,C), where for every aâS, ãCãa is a simple ãCã-act or for every aâS, ãCãa is finite. Similarly, we characterize a ColAutC(S)-vertex-transitive Cay(S,C) when for every câC, |ãcã| is infinite and c is left cancellable. Finally, we use these results to establish that if S=âªÌαâYSα is a semilattice of semigroups Sα and C is a non-empty subset of S, then the ColAutC(S)-vertex-transitivity of Cay(S,C) implies that Y has an identity e and C=Ce. This answers an open question asked in a previous article.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: European Journal of Combinatorics - Volume 40, August 2014, Pages 55-64
Journal: European Journal of Combinatorics - Volume 40, August 2014, Pages 55-64
نویسندگان
Behnam Khosravi, Behrooz Khosravi, Bahman Khosravi,