کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4653567 | 1632780 | 2014 | 9 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Improved bounds on the difference between the Szeged index and the Wiener index of graphs
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
ریاضیات
ریاضیات گسسته و ترکیبات
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
Let W(G) and Sz(G) be the Wiener index and the Szeged index of a connected graph G, respectively. It is proved that if G is a connected bipartite graph of order nâ¥4, size mâ¥n, and if â is the length of a longest isometric cycle of G, then Sz(G)âW(G)â¥n(mân+ââ2)+(â/2)3ââ2+2â. It is also proved if G is a connected graph of order nâ¥5 and girth gâ¥5, then Sz(G)âW(G)â¥PIv(G)ân(nâ1)+(nâg)(gâ3)+P(g), where PIv(G) is the vertex PI index of G and P is a cubic polynomial. These theorems extend related results from Chen et al. (2014). Several lower bounds on the difference Sz(G)âW(G) for general graphs G are also given without any condition on the girth.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: European Journal of Combinatorics - Volume 39, July 2014, Pages 148-156
Journal: European Journal of Combinatorics - Volume 39, July 2014, Pages 148-156
نویسندگان
Sandi Klavžar, M.J. Nadjafi-Arani,