کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4653567 1632780 2014 9 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Improved bounds on the difference between the Szeged index and the Wiener index of graphs
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات ریاضیات گسسته و ترکیبات
پیش نمایش صفحه اول مقاله
Improved bounds on the difference between the Szeged index and the Wiener index of graphs
چکیده انگلیسی
Let W(G) and Sz(G) be the Wiener index and the Szeged index of a connected graph G, respectively. It is proved that if G is a connected bipartite graph of order n≥4, size m≥n, and if ℓ is the length of a longest isometric cycle of G, then Sz(G)−W(G)≥n(m−n+ℓ−2)+(ℓ/2)3−ℓ2+2ℓ. It is also proved if G is a connected graph of order n≥5 and girth g≥5, then Sz(G)−W(G)≥PIv(G)−n(n−1)+(n−g)(g−3)+P(g), where PIv(G) is the vertex PI index of G and P is a cubic polynomial. These theorems extend related results from Chen et al. (2014). Several lower bounds on the difference Sz(G)−W(G) for general graphs G are also given without any condition on the girth.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: European Journal of Combinatorics - Volume 39, July 2014, Pages 148-156
نویسندگان
, ,