کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4653654 | 1632791 | 2013 | 24 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Separability and the genus of a partial dual
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
ریاضیات
ریاضیات گسسته و ترکیبات
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
Partial duality generalizes the fundamental concept of the geometric dual of an embedded graph. A partial dual is obtained by forming the geometric dual with respect to only a subset of edges. While geometric duality preserves the genus of an embedded graph, partial duality does not. Here we are interested in the problem of determining which edge sets of an embedded graph give rise to a partial dual of a given genus. This problem turns out to be intimately connected to the separability of the embedded graph. We determine how separability is related to the genus of a partial dual. We use this to characterize partial duals of graphs embedded in the plane, and in the real projective plane, in terms of a particular type of separation of an embedded graph. These characterizations are then used to determine a local move relating all partially dual graphs in the plane and in the real projective plane.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: European Journal of Combinatorics - Volume 34, Issue 2, February 2013, Pages 355-378
Journal: European Journal of Combinatorics - Volume 34, Issue 2, February 2013, Pages 355-378
نویسندگان
Iain Moffatt,