کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4653658 1632791 2013 10 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Degree Ramsey numbers for cycles and blowups of trees
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات ریاضیات گسسته و ترکیبات
پیش نمایش صفحه اول مقاله
Degree Ramsey numbers for cycles and blowups of trees
چکیده انگلیسی
Let H→sG mean that every s-coloring of E(H) produces a monochromatic copy of G in some color class. Let the s-color degree Ramsey number of a graph G, written RΔ(G;s), be min{Δ(H):H→sG}. We prove that the 2-color degree Ramsey number is at most 96 for every even cycle and at most 3458 for every odd cycle. For the general s-color problem on even cycles, we prove RΔ(C2m;s)≤16s6 for all m, and RΔ(C4;s)≥0.007s14/9. The constant upper bound forRΔ(Cn;2) uses blowups of graphs, where the d-blowup of a graph G is the graph G′ obtained by replacing each vertex of G with an independent set of size d and each edge e of G with a copy of the complete bipartite graph Kd,d. We also prove the existence of a function f such that if G′ is the d-blowup of G, then RΔ(G′;s)≤f(RΔ(G;s),s,d).
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: European Journal of Combinatorics - Volume 34, Issue 2, February 2013, Pages 414-423
نویسندگان
, , ,