کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4653681 | 1632781 | 2014 | 12 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Entire (Î+2)-colorability of plane graphs
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
ریاضیات
ریاضیات گسسته و ترکیبات
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
Let G=(V,E,F) be a plane graph with the sets of vertices, edges and faces V, E and F, respectively. If one can color all elements in VâªEâªF with k colors so that any two adjacent or incident elements receive distinct colors, then G is said to be entirely k-colorable. The smallest integer k such that G is entirely k-colorable is denoted by Ïvef(G). In 1993, Borodin established the tight upper bound of Ïvef(G) to be Î+2 for plane graphs with maximum degree Îâ¥12. In 2011, Wang and Zhu asked: what is the smallest integer Î0 such that every plane graph with Îâ¥Î0 is entirely (Î+2)-colorable? For the initial step to determine the exact value of Î0, Borodin asked in 2013: is it true that Ïvefâ¤13 holds for every plane graph with Î=11? In this paper, we prove that every plane graph with maximum degree Îâ¥10 is entirely (Î+2)-colorable.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: European Journal of Combinatorics - Volume 38, May 2014, Pages 110-121
Journal: European Journal of Combinatorics - Volume 38, May 2014, Pages 110-121
نویسندگان
Yingqian Wang,