کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4653696 1632795 2012 7 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Rigidity and the chessboard theorem for cube packings
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات ریاضیات گسسته و ترکیبات
پیش نمایش صفحه اول مقاله
Rigidity and the chessboard theorem for cube packings
چکیده انگلیسی

We are concerned with subsets of RdRd that can be tiled with translates of the half-open unit cube in a unique way. We call them rigid sets. We show that the set tiled with [0,1)d+s[0,1)d+s, s∈Ss∈S, is rigid if for any pair of distinct vectors tt, t′∈St′∈S the number |{i:|ti−ti′|=1}| is even whenever t−t′∈{−1,0,1}dt−t′∈{−1,0,1}d. As a consequence, we obtain the chessboard theorem which reads that for each packing [0,1)d+s[0,1)d+s, s∈Ss∈S, of RdRd, there is an explicitly defined partition {S0,S1}{S0,S1} of SS such that the sets tiled with the systems [0,1)d+s[0,1)d+s, s∈Sis∈Si, where i=0,1i=0,1, are rigid. The technique developed in the paper is also applied to demonstrate certain structural results concerning cube tilings of RdRd.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: European Journal of Combinatorics - Volume 33, Issue 6, August 2012, Pages 1113–1119
نویسندگان
, ,