کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4653704 1632795 2012 20 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Small minors in dense graphs
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات ریاضیات گسسته و ترکیبات
پیش نمایش صفحه اول مقاله
Small minors in dense graphs
چکیده انگلیسی

A fundamental result in structural graph theory states that every graph with large average degree contains a large complete graph as a minor. We prove this result with the extra property that the minor is small with respect to the order of the whole graph. More precisely, we describe functions ff and hh such that every graph with nn vertices and average degree at least f(t)f(t) contains a KtKt-model with at most h(t)⋅lognh(t)⋅logn vertices. The logarithmic dependence on nn is best possible (for fixed tt). In general, we prove that f(t)≤2t−1+εf(t)≤2t−1+ε. For t≤4t≤4, we determine the least value of f(t)f(t); in particular, f(3)=2+εf(3)=2+ε and f(4)=4+εf(4)=4+ε. For t≤4t≤4, we establish similar results for graphs embedded on surfaces, where the size of the KtKt-model is bounded (for fixed tt).

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: European Journal of Combinatorics - Volume 33, Issue 6, August 2012, Pages 1226–1245
نویسندگان
, , , ,