کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4653725 1632786 2013 14 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Transversals of Latin squares and covering radius of sets of permutations
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات ریاضیات گسسته و ترکیبات
پیش نمایش صفحه اول مقاله
Transversals of Latin squares and covering radius of sets of permutations
چکیده انگلیسی

We consider the symmetric group SnSn as a metric space with the Hamming metric. The covering radius cr(S) of a set of permutations S⊂SnS⊂Sn is the smallest rr such that SnSn is covered by the balls of radius rr centred at the elements of SS. For given nn and ss, let f(n,s)f(n,s) denote the cardinality of the smallest set SS of permutations with cr(S)⩽n−s.The value of f(n,2)f(n,2) is the subject of a conjecture by Kézdy and Snevily that implies two famous conjectures by Ryser and Brualdi on transversals in Latin squares. We show that f(n,2)⩽n+O(logn)f(n,2)⩽n+O(logn) for all nn and that f(n,2)⩽n+2f(n,2)⩽n+2 whenever n=3mn=3m for m>1m>1. We also construct, for each odd m⩾3m⩾3, a Latin square of order 3m3m with two rows that each contain 2m−22m−2 transversal-free entries. This gives an infinite family of Latin squares with odd order nn and at most n/3+O(1)n/3+O(1) disjoint transversals. The previous strongest upper bound for such a family was n/2+O(1)n/2+O(1).Finally, we show that f(5,3)=15f(5,3)=15 and record a proof by Blackburn that cr(AGL(1,q))=q−3 when qq is odd.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: European Journal of Combinatorics - Volume 34, Issue 7, October 2013, Pages 1130–1143
نویسندگان
, ,