کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4653767 1632797 2012 18 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Improved bounds on coloring of graphs
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات ریاضیات گسسته و ترکیبات
پیش نمایش صفحه اول مقاله
Improved bounds on coloring of graphs
چکیده انگلیسی

Given a graph GG with maximum degree Δ≥3Δ≥3, we prove that the acyclic edge chromatic number a′(G)a′(G) of GG is such that a′(G)≤⌈9.62(Δ−1)⌉a′(G)≤⌈9.62(Δ−1)⌉. Moreover we prove that: a′(G)≤⌈6.42(Δ−1)⌉a′(G)≤⌈6.42(Δ−1)⌉ if GG has girth g≥5; a′(G)≤⌈5.77(Δ−1)⌉a′(G)≤⌈5.77(Δ−1)⌉ if GG has girth g≥7g≥7; a′(G)≤⌈4.52(Δ−1)⌉a′(G)≤⌈4.52(Δ−1)⌉ if g≥53g≥53; a′(G)≤Δ+2a′(G)≤Δ+2 if g≥⌈25.84ΔlogΔ(1+4.1/logΔ)⌉g≥⌈25.84ΔlogΔ(1+4.1/logΔ)⌉. We further prove that the acyclic (vertex) chromatic number a(G)a(G) of GG is such that a(G)≤⌈6.59Δ4/3+3.3Δ⌉a(G)≤⌈6.59Δ4/3+3.3Δ⌉. We also prove that the star-chromatic number χs(G)χs(G) of GG is such that χs(G)≤⌈4.34Δ3/2+1.5Δ⌉χs(G)≤⌈4.34Δ3/2+1.5Δ⌉. We finally prove that the ββ-frugal chromatic number χβ(G)χβ(G) of GG is such that χβ(G)≤⌈max{k1(β)Δ,k2(β)Δ1+1/β/(β!)1/β}⌉χβ(G)≤⌈max{k1(β)Δ,k2(β)Δ1+1/β/(β!)1/β}⌉, where k1(β)k1(β) and k2(β)k2(β) are decreasing functions of ββ such that k1(β)∈[4,6]k1(β)∈[4,6] and k2(β)∈[2,5]k2(β)∈[2,5]. To obtain these results we use an improved version of the Lovász Local Lemma due to Bissacot et al. (2011) [6].

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: European Journal of Combinatorics - Volume 33, Issue 4, May 2012, Pages 592–609
نویسندگان
, , ,