کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4653784 | 1632787 | 2013 | 11 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Linear colorings of subcubic graphs
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
ریاضیات
ریاضیات گسسته و ترکیبات
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
A linear coloring of a graph is a proper coloring of the vertices of the graph so that each pair of color classes induces a union of disjoint paths. In this paper, we prove that for every connected graph with maximum degree at most three and every assignment of lists of size four to the vertices of the graph, there exists a linear coloring such that the color of each vertex belongs to the list assigned to that vertex and the neighbors of every degree-two vertex receive different colors, unless the graph is C5 or K3,3. This confirms a conjecture raised by Esperet, Montassier and Raspaud [L. Esperet, M. Montassier, and A. Raspaud, Linear choosability of graphs, Discrete Math. 308 (2008) 3938-3950]. Our proof is constructive and yields a linear-time algorithm to find such a coloring.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: European Journal of Combinatorics - Volume 34, Issue 6, August 2013, Pages 1040-1050
Journal: European Journal of Combinatorics - Volume 34, Issue 6, August 2013, Pages 1040-1050
نویسندگان
Chun-Hung Liu, Gexin Yu,